Chapter 3

Water and the Fitness of the Environment

Biology Eighth Edition Neil Campbell and Jane Reece

PowerPoint[®] Lecture Presentations for

Overview: The Molecule That Supports All of Life

Why dedicate a Chapter to water?

Importance of Water:

ight © 2008 Pear

Concept 3.2: Four emergent properties of water contribute to Earth's fitness for life

Because of <u>hydrogen bonding</u>, water exhibits 4 important properties:

- A. Cohesion/Adhesion
- B. Ability to moderate temperature
- C. Insulation of bodies of water by Floating Ice
- D. Versatility as a solvent

ight © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cur

Match the properties with photos on the next slide

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Which of the following explains what is happening when sodium chloride dissolves in water?

- a. More hydrogen bonds are forming between water molecules.
- b. Sodium and chloride atoms are separating from one another.
- c. Hydration shells are forming around the sodium and chloride ions.
- d. Covalent bonds are breaking and re-forming.
- e. Nonpolar substances are mixing with polar substances.

• Even large polar molecules such as proteins can dissolve in water if they have ionic and polar regions

Hydrophilic and Hydrophobic Substances

- A hydrophilic substance is
- A hydrophobic substance is

ing as Pea

ight © 2008 Pearson Education, Inc., pub

Effects of Changes in pH

ight © 2008 Pearson Education, Inc., publishing as Pearson Ber

- Concentrations of H⁺ and OH⁻ are equal in pure water
- Adding certain solutes, called acids and bases, modifies the concentrations of H⁺ and OH⁻
- Biologists use something called the pH scale to describe whether a solution is acidic or basic

The pH Scale

- In any aqueous solution at 25°C the product of H⁺ and OH⁻ is constant and can be written as [H⁺][OH⁻] = 10⁻¹⁴
- The pH of a solution is defined by the negative logarithm of H⁺ concentration, written as pH = -log [H⁺]
- For a neutral aqueous solution $[H^+]$ is $10^{-7} = -(-7) = 7$

Buffers

- **Buffers** are substances that minimize changes in concentrations of H⁺ and OH⁻ in a solution
- Most buffers consist of an acid-base pair that reversibly combines with H⁺
- What is one important buffer in the human body?

ight © 2008 Pearson Education, Inc., publishing as Pear

The chemical equilibrium between carbonic acid and bicarbonate acts as a pH regulator in our blood. As the blood pH begins to rise, what will happen?	
С	$H_2CO_3 \leftrightarrow HCO_3^- + H^+$ arbonic acid Bicarbonate ion Hydrogen ion
a.	reaction proceeds to the right; more carbonic acid dissociates
b.	reaction proceeds to the right; more carbonic acid forms
C.	reaction proceeds to the left; more carbonic acid dissociates
d.	reaction proceeds to the left; more carbonic acid forms